ecoevo.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Dedicated to Ecology and Evolution. We welcome academics, students, industry scientists, folks from other fields with links to E&E, scientific societies, and nature enthusiasts in general.

Administered by:

Server stats:

628
active users

#fluiddynamics

6 posts6 participants1 post today
Nicole Sharp<p><strong>Climate Change and the Equatorial Cold Tongue</strong></p><p>A cold region of Pacific waters stretches westward along the equator from the coast of Ecuador. Known as the equatorial cold tongue, this region exists because trade winds push surface waters away from the equator and allow colder, deeper waters to surface. Previous climate models have predicted warming for this region, but instead we’ve observed cooling — or at least a resistance to warming. <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Now researchers</a> using decades of data and new simulations report that the observed cooling trend is, in fact, a result of human-caused climate changes. Like the cold tongue itself, this new cooling comes from wind patterns that change ocean mixing.</p><p>As pleasant as a cooling streak sounds, this trend has unfortunate consequences elsewhere. Scientists have found that this cooling has a direct effect on drought in East Africa and southwestern North America. (Image credit: J. Shoer; via <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APS News</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Bob Harvey<p>Ok, this is really interesting </p><p><a href="https://www.livescience.com/physics-mathematics/mathematics/mathematicians-just-solved-a-125-year-old-problem-uniting-3-theories-in-physics" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">livescience.com/physics-mathem</span><span class="invisible">atics/mathematics/mathematicians-just-solved-a-125-year-old-problem-uniting-3-theories-in-physics</span></a></p><p><a href="https://cupoftea.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://cupoftea.social/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://cupoftea.social/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluiddynamics</span></a> <a href="https://cupoftea.social/tags/hilbert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hilbert</span></a> <a href="https://cupoftea.social/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a></p>
Nicole Sharp<p><strong>Ghostly Waterfalls</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-4.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-5.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-6.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-7.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-9.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-10.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-2.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Photographer Jonathan Knight likes capturing waterfalls about 45 minutes after sunset, creating ghostly images that emphasize the shape of the cascading water. The dim surroundings and misty shapes remind me of old daguerreotypes. See more of his images on <a href="https://www.jonathanknight.net/" rel="nofollow noopener noreferrer" target="_blank">his website</a> and his <a href="https://www.instagram.com/jknightphoto" rel="nofollow noopener noreferrer" target="_blank">Instagram</a>. (Image credit: <a href="https://www.jonathanknight.net/" rel="nofollow noopener noreferrer" target="_blank">J. Knight</a>; via <a href="https://www.thisiscolossal.com/2025/04/jonathan-knight-waterfalls/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/waterfalls/" target="_blank">#waterfalls</a></p>
Nicole Sharp<p><strong>Hot Droplets Bounce</strong></p><p>In the Leidenfrost effect, room-temperature droplets bounce and skitter off a surface much hotter than the drop’s boiling point. With those droplets, a layer of vapor cushions them and insulates them from the hot surface. In today’s study, researchers instead used hot or burning drops (above) and observed how they impact a room-temperature surface. While room-temperature droplets hit and stuck (below), hot and burning droplets bounced (above).</p><p>In this case, the cushioning air layer doesn’t come from vaporization. Instead, the bottom of the falling drop cools faster than the rest of it, increasing the local surface tension. That increase in surface tension creates a Marangoni flow that pulls fluid down along the edges of the drop. That flow drags nearby air with it, creating the cushioning layer that lets the drop bounce. In this case, the authors called the phenomenon “self-lubricating bouncing.” (Image and research credit: <a href="https://doi.org/10.1016/j.newton.2025.100014" rel="nofollow noopener noreferrer" target="_blank">Y. Liu et al.</a>; via <a href="https://arstechnica.com/science/2025/03/these-hot-oil-droplets-can-bounce-off-any-surface/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p> <p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bouncing-droplets/" target="_blank">#bouncingDroplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-impact/" target="_blank">#dropletImpact</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/entrainment/" target="_blank">#entrainment</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Bifurcating Waterways</strong></p><p>Your typical river has a single water basin and drains along a river or two on its way to the sea. But there are a handful of rivers and lakes that don’t obey our usual expectations. Some rivers flow in two directions. Some lakes have multiple outlets, each to a separate water basin. That means that water from a single lake can wind up in two entirely different bodies of water.</p><p>The most famous example of these odd waterways is South America’s Casiquiare River, seen running north to south in the image above. This navigable river connects the Orinoco River (flowing east to west in this image) with the Rio Negro (not pictured). Since the Rio Negro eventually joins the Amazon, the Casiquiare River’s meandering, nearly-flat course connects the continent’s two largest basins: the Orinoco and the Amazon.</p><p>For more strange waterways across the Americas, check out <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">this review paper</a>, which describes a total of 9 such hydrological head-scratchers. (Image credit: <a href="https://www.flickr.com/photos/observacao-da-terra/31909257768/" rel="nofollow noopener noreferrer" target="_blank">Coordenação-Geral de Observação da Terra/INPE</a>; research credit: <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">R. Sowby and A. Siegel</a>; via <a href="https://eos.org/research-spotlights/the-rivers-that-science-says-shouldnt-exist?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-hydrology/" target="_blank">#surfaceHydrology</a></p>
UK<p><a href="https://www.europesays.com/uk/39984/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/39984/</span><span class="invisible"></span></a> Physicists Have Unlocked the Secret to the Perfect Cup of Coffee, While Using Fewer Beans <a href="https://pubeurope.com/tags/coffee" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coffee</span></a> <a href="https://pubeurope.com/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://pubeurope.com/tags/PerfectCup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PerfectCup</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a> <a href="https://pubeurope.com/tags/UniversityOfPennsylvania" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UniversityOfPennsylvania</span></a></p>
Nicole Sharp<p><strong>Playful Martian Dust Devils</strong></p><p>The Martian atmosphere lacks the density to support tornado storm systems, but vortices are nevertheless a frequent occurrence. As sun-warmed gases rise, neighboring air rushes in, bringing with it any twisted shred of vorticity it carries. Just as an ice skater pulling her arms in spins faster, the gases spin up, forming a dust devil.</p><p>In this recent footage from the Perseverance Rover, four dust devils move across the landscape. In the foreground, a tiny one meets up with a big 64-meter dust devil, getting swallowed up in the process. It’s hard to see the details of their crossing, but you can see other vortices meeting and reconnecting here. (Video and image credit: <a href="https://www.jpl.nasa.gov/news/perseverance-rover-witnesses-one-martian-dust-devil-eating-another/" rel="nofollow noopener noreferrer" target="_blank">NASA/JPL-Caltech/LANL/CNES/CNRS/INTA-CSIC/Space Science Institute/ISAE-Supaero/University of Arizona</a>; via <a href="https://gizmodo.com/nasas-mars-rover-captures-a-giant-dust-devil-swallowing-its-friend-2000584896?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p></p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/conservation-of-angular-momentum/" target="_blank">#conservationOfAngularMomentum</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dust-devils/" target="_blank">#dustDevils</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vorticity/" target="_blank">#vorticity</a></p>
Nicole Sharp<p><strong>Inside an Alien Atmosphere</strong></p><p>Studying the physics of planetary atmospheres is challenging, not least because we only have a handful of examples to work from in our own solar system. So it’s exciting that <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">researchers have unveiled</a> our first look at the 3D structure of an exoplanet‘s atmosphere. </p><p>Using ground-based observations, researchers studied WASP-121b, also known as Tylos, an ultra-hot Jupiter that circles its star in only 30 Earth hours. One face of the planet always faces its star while the other faces into space. The team found that the exoplanet has a flow deep in the atmosphere that carries iron from the hot daytime side to the colder night side. Higher up, the atmosphere boasts a super-fast jet-stream that doubles in speed (from an estimated 13 kilometers per second to 26 kilometers per second) as it crosses from the morning terminator to the evening. As one researcher observed, the planet’s everyday winds make Earth’s worst hurricanes look tame. (Image credit: <a href="https://www.eso.org/public/images/eso2504b/" rel="nofollow noopener noreferrer" target="_blank">ESO/M. Kornmesser</a>; research credit: <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">J. Seidel et al.</a>; via <a href="https://gizmodo.com/first-3d-map-of-an-exoplanets-atmosphere-reveals-bizarre-weather-2000566049?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/exoplanets/" target="_blank">#exoplanets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Channeling Espresso</strong></p><p>Coffee-making continues to be a rich source for physics insight. The roasting and brewing processes are fertile ground for chemistry, physics, and engineering. Recently, one <a href="https://arstechnica.com/science/2025/03/the-physics-of-brewing-the-perfect-espresso/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">research group has focused</a> on the phenomenon of channeling, where water follows a preferred path through the coffee grounds rather than seeping uniformly through the grounds. Channeling reduces the amount of coffee extracted in the brew, which is both wasteful and results in a less flavorful cup. By uncovering what mechanics go into channeling, the group hopes to help baristas mitigate the undesirable process, creating a repeatable, efficient, and tasty espresso every time. (Image credit: <a href="https://unsplash.com/photos/person-holding-silver-steel-cup-sBS-Ufi0f1g" rel="nofollow noopener noreferrer" target="_blank">E. Yavuz</a>; via <a href="https://arstechnica.com/science/2025/03/the-physics-of-brewing-the-perfect-espresso/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/coffee/" target="_blank">#coffee</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cooking/" target="_blank">#cooking</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-flow/" target="_blank">#porousFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-media/" target="_blank">#porousMedia</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Steven Carneiro<p>Advancing mathematical physics for fluid motion:<br><a href="https://social.vivaldi.net/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluiddynamics</span></a> <a href="https://social.vivaldi.net/tags/motion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>motion</span></a> <a href="https://social.vivaldi.net/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://social.vivaldi.net/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://social.vivaldi.net/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a><br>🤓</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/</span></a></p>
Jochen Fromm<p>Researchers claim to have solved Hilbert’s sixth problem by unifying three theories of <a href="https://fediscience.org/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> at different levels of granularity:</p><p>+ Newton’s laws of motion at the microscopic level where fluids are composed of particles - little billiard balls bopping around and occasionally colliding</p><p>+ The Boltzmann equation at the mesoscopic level where the equation considers the likely behavior of a typical particle</p><p>+ Euler and <a href="https://fediscience.org/tags/NavierStokes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NavierStokes</span></a> equations at the macroscopic level where the fluids are a single continuous substance</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved</span></a></p><p>Preprint <a href="https://arxiv.org/abs/2503.01800" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2503.01800</span><span class="invisible"></span></a></p>
Nicole Sharp<p><strong>Flying Without a Rudder</strong></p><p>Aircraft typically use a vertical tail to keep the craft from rolling or yawing. Birds, on the other hand, maneuver their wings and tail feathers to counter unwanted motions. <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">Researchers found</a> that the list of necessary adjustments is quite small: just 4 for the tail and 2 for the wings. Implementing those 6 controllable degrees of freedom on their bird-inspired PigeonBot II allowed the biorobot to fly steadily, even in turbulent conditions, without a rudder. Adapting such flight control to the less flexible surfaces of a typical aircraft will take time and creativity, but the savings in mass and drag could be worth it. (Image credit: E. Chang/Lentink Lab; research credit: <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">E. Chang et al.</a>; via <a href="https://doi.org/10.1063/pt.usov.ggrh" rel="nofollow noopener noreferrer" target="_blank">Physics Today</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biorobotics/" target="_blank">#biorobotics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bird-flight/" target="_blank">#birdFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/birds/" target="_blank">#birds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flight-control/" target="_blank">#flightControl</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Soh Kam Yung<p>"In the paper, the researchers suggest they have figured out how to unify three physical theories that explain the motion of fluids. [...] This breakthrough won’t change the theories themselves, but it mathematically justifies them and strengthens our confidence that the equations work in the way we think they do."</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/</span></a></p><p><a href="https://mstdn.io/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://mstdn.io/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mstdn.io/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mstdn.io/tags/Equations" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Equations</span></a></p>
Nicole Sharp<p><strong>Salt Fingers</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Any time a fluid under gravity has areas of differing density, it convects. We’re used to thinking of this in terms of temperature — “hot air rises” — but temperature isn’t the only source of convection. Differences in concentration — like salinity in water — cause convection, too. This video shows a special, more complex case: what happens when there are <a href="https://en.wikipedia.org/wiki/Double_diffusive_convection" rel="nofollow noopener noreferrer" target="_blank">two sources of density gradient</a>, each of which diffuses at a different rate.</p><p>The classic example of this occurs in the ocean, where colder fresher water meets warmer, saltier water (and vice versa). Cold water tends to sink. So does saltier water. But since temperature and salinity move at different speeds, their competing convection takes on a shape that resembles dancing, finger-like plumes as seen here. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2677989" rel="nofollow noopener noreferrer" target="_blank">M. Mohaghar et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-convection/" target="_blank">#doubleDiffusiveConvection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-instability/" target="_blank">#doubleDiffusiveInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Winter in Chicago</strong></p><p>Fresh winter snow blankets Chicago in this satellite image. Over on Lake Michigan, ice dots the coastline out to about 20 kilometers from shore. Darker regions near land mark thinner ice being pushed outward by the wind. Further out, the ice appears white and may be thicker thanks to wind-driven ice piling up. (Image credit: M. Garrison; via <a href="https://earthobservatory.nasa.gov/images/153885/a-chill-over-chicagoland" rel="nofollow noopener noreferrer" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wind/" target="_blank">#wind</a></p>
Nicole Sharp<p><strong>Measuring Mucus by Dragging Dead Fish</strong></p><p>A fish‘s mucus layer is critical; it protects from pathogens, reduces drag in the water, and, in some cases, protects against predators. But little is known about how mucus could affect terrestrial locomotion in species like the northern snakehead, which can breathe out of the water and move across land. So researchers explored the snakehead’s mucus layer by measuring the force required to drag them (and two other non-terrestrial species) across different surfaces.</p><p>The team tested the same, freshly euthanized fish twice: once with its mucus layer intact and again once the mucus was washed off. Unsurprisingly, the fish’s friction was much lower with its mucus. But they also found that the snakehead was slipperier than either the scaled carp or the scale-free catfish. The biologists suggest that the snakehead could have evolved a slipperier mucus to help it move more easily on land, thereby extending the distance it can cover.</p><p>As a fluid dynamicist, I think fish mucus sounds like a great new playground for the rheologists among us. (Image and research credit: <a href="https://doi.org/10.1093/icb/icaf002" rel="nofollow noopener noreferrer" target="_blank">F. Lopez-Chilel and N. Bressman</a>; via <a href="https://www.popsci.com/environment/fish-mucus-study/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">PopSci</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fish/" target="_blank">#fish</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rheology/" target="_blank">#rheology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Reclaiming the Land</strong></p><p>Lava floods human-made infrastructure on Iceland’s Reykjanes peninsula in this aerial image from photographer Ael Kermarec. Protecting roads and buildings from lava flows is a formidable challenge, but it’s one that researchers are tackling. But the larger and faster the lava flow, the harder infrastructure is to protect. Sometimes our best efforts are simply overwhelmed by nature’s power. (Image credit: <a href="https://www.worldnaturephotographyawards.com/winners-2025" rel="nofollow noopener noreferrer" target="_blank">A. Kermarec/WNPA</a>; via <a href="https://www.thisiscolossal.com/2025/03/2025-world-nature-photography-awards/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gravity-current/" target="_blank">#gravityCurrent</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lava/" target="_blank">#lava</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Fergus Murray<p>Here's another video of the dry ice 'smoke' doing its thing. <a class="hashtag" href="https://bsky.app/search?q=%23slowMotion" rel="nofollow noopener noreferrer" target="_blank">#slowMotion</a> <a class="hashtag" href="https://bsky.app/search?q=%23physics" rel="nofollow noopener noreferrer" target="_blank">#physics</a> <a class="hashtag" href="https://bsky.app/search?q=%23vortices" rel="nofollow noopener noreferrer" target="_blank">#vortices</a> <a class="hashtag" href="https://bsky.app/search?q=%23slomo" rel="nofollow noopener noreferrer" target="_blank">#slomo</a> <a class="hashtag" href="https://bsky.app/search?q=%23fluidDynamics" rel="nofollow noopener noreferrer" target="_blank">#fluidDynamics</a> <a class="hashtag" href="https://bsky.app/search?q=%23%F0%9F%A7%AA" rel="nofollow noopener noreferrer" target="_blank">#🧪</a></p>
Nicole Sharp<p><strong>Crowd Vortices</strong></p><p>The Feast of San Fermín in Pamplona, Spain draws crowds of thousands. <a href="https://doi.org/10.1038/s41586-024-08514-6" rel="nofollow noopener noreferrer" target="_blank">Scientists recently published</a> an analysis of the crowd motion in these dense gatherings. The team filmed the crowds at the festival from balconies overlooking the plaza in 2019, 2022, 2023, and 2024. Analyzing the footage, they discovered that at crowd densities above 4 people per square meter, the crowd begins to move in almost imperceptible eddies. In the animation below, lines trace out the path followed by single individuals in the crowd, showing the underlying “vortex.” At the plaza’s highest density — 9 people per square meter — one rotation of the vortex took about 18 seconds. </p> <p>The team found similar patterns in footage of the crowd at the 2010 Love Parade disaster, in which 21 people died. These patterns aren’t themselves an indicator of an unsafe crowd — none of the studied Pamplona crowds had a problem — but understanding the underlying dynamics should help planners recognize and prevent dangerous crowd behaviors before the start of a stampede. (Image credit: still – <a href="https://unsplash.com/photos/people-on-gray-concrete-66BEYHtoWYY" rel="nofollow noopener noreferrer" target="_blank">San Fermín</a>, animation – Bartolo Lab; research credit: <a href="https://doi.org/10.1038/s41586-024-08514-6" rel="nofollow noopener noreferrer" target="_blank">F. Gu et al.</a>; via <a href="https://www.nature.com/articles/d41586-025-00373-z?linkId=12807715&amp;__readwiseLocation" rel="nofollow noopener noreferrer" target="_blank">Nature</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/active-matter/" target="_blank">#activeMatter</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/collective-motion/" target="_blank">#collectiveMotion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crowds/" target="_blank">#crowds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortices/" target="_blank">#vortices</a></p>
Hacker News<p>The Mysterious Flow of Fluid in the Brain</p><p><a href="https://www.quantamagazine.org/the-mysterious-flow-of-fluid-in-the-brain-20250326/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/the-mysteri</span><span class="invisible">ous-flow-of-fluid-in-the-brain-20250326/</span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/MysteriousBrainFlow" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MysteriousBrainFlow</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Neuroscience</span></a> <a href="https://mastodon.social/tags/QuantaMagazine" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantaMagazine</span></a> <a href="https://mastodon.social/tags/BrainResearch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainResearch</span></a></p>